Spark Kafka consumer is unable to read messages, of a certain size or count in batches. I have tried few approaches as mentioned in Kafka docs but with no success. Here is a link to Stack Overflow where I asked the same question with no response and think this is a possible bug here. Same configuration works fine when the consumer is a java code.
Here is the consumer code which fetches data from Kafka,
val streamingContext = new StreamingContext(sparkSession.sparkContext, Seconds(10))
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "test",
"fetch.max.bytes" -> "65536",
"max.partition.fetch.bytes" -> "8192",
"max.poll.records" -> "100",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean),
"sasl.jaas.config"-> "org.apache.kafka.common.security.plain.PlainLoginModule required username=\"admin\" password=\"admin\";",
"sasl.mechanism" -> "PLAIN",
"security.protocol" -> "SASL_PLAINTEXT",
)
val topics = Array("test.topic")
val stream = KafkaUtils.createDirectStream[String, String](
streamingContext,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
stream.foreachRDD {
rdd =>
val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
println(offsetRanges.foreach(a => println(a.topic + ":" + a.partition + ":" + a.fromOffset + ":" + a.untilOffset + ":" + a.count())))
val df = rdd.map(a => a.value().split(",")).toDF()
val selectCols = columns.indices.map(i => $"value"(i))
var newDF = df.select(selectCols: _*).toDF(columns: _*)
// Some business operations here and then write to back to kafka.
newDF.write
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("topic", "topic.ouput")
.option("kafka.sasl.jaas.config", "org.apache.kafka.common.security.plain.PlainLoginModule required username=\"admin\" password=\"admin\";")
.option("kafka.sasl.mechanism", "PLAIN")
.option("kafka.security.protocol", "SASL_PLAINTEXT")
.save()
stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
sparkSession.catalog.clearCache()
}
streamingContext.start()
streamingContext.awaitTermination()
Output:
test.topic:6:1345075:4163058:2817983
test.topic:0:1339456:4144190:2804734
test.topic:3:1354266:4189336:2835070
test.topic:7:1353542:4186148:2832606
test.topic:5:1355140:4189071:2833931
test.topic:2:1351162:4173375:2822213
test.topic:1:1352801:4184073:2831272
test.topic:4:1348558:4166749:2818191
()
test.topic:6:4163058:4163058:0
test.topic:0:4144190:4144190:0
test.topic:3:4189336:4189336:0
test.topic:7:4186148:4186148:0
test.topic:5:4189071:4189071:0
test.topic:2:4173375:4173375:0
test.topic:1:4184073:4184073:0
test.topic:4:4166749:4166749:0
I tried different options as followed,
Option 1:
Topic Partition 8
Streaming Context 1 sec:
“fetch.max.bytes” → “65536”, // 64 Kb
“max.partition.fetch.bytes” → “8192” // 8Kb
“max.poll.records” → “100”
DataFrame count which it read from Kafka in the very first batch: 1200000
Option 2:
Partition 1
Streaming Context 1 sec
“fetch.max.bytes” → “65536”,
“max.partition.fetch.bytes” → “8192”
“max.poll.records” → “100”
Kafka Lag: 126360469
DataFrame count which it read from Kafka in the very first batch: 126360469.